Introduction to MPI-10

Rob Latham
Research Software Developer, Argonne National Laboratory

extremecomputingtraining.anl.gov E\(\C\ B Argonneﬁ

Plan of attack

A Bottom-up tour of I/O interfaces
A POSIX routines called by MPI-10 implementations
A Parallel-NetCDF routines build on top of MPI-IO

A Simple toy programs
A Refining example several times throughout session PNETCDF HDF5
A You can apply these lessons to your own code

A Heads up: going to do things the "hard way", then show "easier MPI-10

way

POSIX

Idan)

ADemonstrating some tools for unders

ESC code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov E\@\\P g Argonneé

https://github.com/radix-io/hands-on

Hands on materials

A Code for this &
A Simple array 1/0

Aé and other secti gtassiitmvail able on our
A Game of Life I/O
A Sparse Matrix I/O
A Darshan
A HDF5
A 10OR recipes
A https://github.com/radix-io/hands-on
A Work through examples when you can. Wedre going t

ESC code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov E@\\P e Argonneé

https://github.com/radix-io/hands-on
https://github.com/radix-io/hands-on

Operating on Arrays

A Arrays show up in many scientific applications
A Matrix operations
A Particle maps
A Regions of space
A Time series

A Images
A Probably your real application more complicated but an
array or two (or more) is in t : | 6d
ESC code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov E\@\\P e Argonneﬁ
EXTREME-SCALE COMPUTING NATIONAL LABORATORY

https://github.com/radix-io/hands-on

Decomposition

Typical simulations divide up the region belng
simulated into chunks, then group those When speed of

chunks into similar amounts of work. Writing Is the priority,
blobs of data are

e | \Written from each

Graphic from J. Tannabhill, LLNL B [[TTTTTTT] nOde into indiViduaI
_ COTTTTTTTT T SN | files that must then
These regions are then (55 T Y 0 I

be post-processed

distributed to cores for analysis.

(columns) on nodes
(grey boxes) fqr
computation.

p

To prepare data for

analysis, a code
m can write in a
| canonical view by

processing the
data while it is in
memory, resulting
in a better

organized dataset.
VAN VAN Y w

RN
T ES 2 2 code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov E(C\F’ e Argonne 5
EXTREME-SCALE COMPUTING

https://github.com/radix-io/hands-on

Scientific I/O constraints

A Defensive 1/0O:
A Guard against node failures or program errors with checkpointing
A Application saves its own state
A With a bit of extra effort, can be a portable, canonical representation
A 1deally Independent of number of processes

A Restarting:
A Canonical representation aids restarting with a different number of processes

A Data analysis
A Who will consume this data?

A Machine Learning
Adawhy is my [random small read] workload so sl ow?bo0

ESC code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov E@\\P e Argonneé

https://github.com/radix-io/hands-on

Defining a Checkpoint

A Need enough to restart
A Header information
A Size of problem (e.g. matrix dimensions)
A Description of environment (e.g. input parameters)
A Program state
A Should represent the global (canonical) view of the data

A Ideally stored in a convenient container
A Single @At hi nkgyaldofei.)l e, object,

A If all processes checkpoint at once, naturally a parallel, collective operation

ESC code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov E@\\P e Argonneé

https://github.com/radix-io/hands-on

POSIX I/O

A POSIX is the IEEE Portable Operating System Interface for Computing
Environments

AARPOSI X defines a standard way for an :
services from the operating systemo
A Mechanism almost all serial applications use to perform 1/O

A POSIX was created when a single computer owned its own file system

ARGONNE

ESC code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov E\(\:E\\P e Argonneé

https://github.com/radix-io/hands-on

Deficiencies In serial interfaces

POSIX: FORTRAN:

fd = opesofhedfile 6, O_WRONLY| O _CREAT, OPEN(10, Bomé fle 60, &
S_IRUSR|S_IWUSR); STATUS=0repl aced, &

ret = write(fd, w_data, nbytes); ACCESS=0direct o, RECL=16) ;
ret= Iseek (fd, 0, SEEK SET); WRITE(10, REC=2) 15324

ret=read(fd, r data , nbytes); CLOSE(10);

ret = close(fd);

A Typical (serial) 1/O calls seen in applications
A No notion of other processors

A Primitive (if any) data description methods
A Tuning limited to open flags

A No mechanism for data portability
A Fortran not even portable between compilers

ARGONNE

ESC code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov E\@\\P e Argonneﬁ

https://github.com/radix-io/hands-on

HANDS-ON: simple data descriptions (no I/O yet)

A Consider an application that operates on a 2-d array of integers.
1. Write code declaring a 2-d array of integers
A Probably want to allocate on heap, not stack
A Later steps will be easier if you make it a single allocation
2. Define a data structure describing the experiment
A E.g. C struct with row, column, iteration

A Use whatever | anguage you | ikeé
A é& but we can be most Rebpbsglhoinf Aysmd utseo nd o()c . f .
A Sour mlarisii-setup-envshdo t o | oad necessary modul es
A Could run this first example on | aptop if you want

ESC code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov E@\\P e Argonneé

https://github.com/radix-io/hands-on

HANDS-ON: simple I/O

AWe haveno6t t adCkoelD litmabies,but watBnl still checkpoint.
A Serial /0, not parallel

A Memory:2-d array of data plus small utietadder describing stru
A File: same as memory

Al mpl e mwdte tatadi QHosix.c

more closely to MPI-IO later
How will you know it worked?
We are going to repeatedly revise write_data () (and later read data ()) with each exercise

A Will create file and fill in data
A Prototype:
A int write_data (char *filename)
A Use system calls (open(), write(), close()) , nhstdibo fic @ fopes (), fwrite (), fclose () : will map
A
A

ESC code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov E@\\P e Argonneé

https://github.com/radix-io/hands-on

RUNNING

ASubmit to the 6 ApPIRIEYSC202306 queue (

Al 6ve provi ¢geod aa i Gs sthmi tshel | script
A gsub -v"APPLICATION=posix,FILENAME =whatever" submit - polaris.sh
Alf you donot gi vestflddl UENAME, t hen 6

A Which file system to use?
A Tried to make scripts do right thing by default
A Pl ease don 6 t-mourded homd directr S
A Given scripts should already point you to the right parallel directory
A Polaris: /grand/ATPESC2023/ usr /$USER

A Make a directory for your data
A Polaris: mkdir Zp /grand/ATPESC2023/ usr /$USER/

A Set sensible striping:
A Ifs setstripe Zstripe -count -1 /grand/ATPESC2023/ usr/$USER/

ESC code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov E@\\P e Argonneé

https://github.com/radix-io/hands-on

Solution fragments:

. . *f . . . ~ \ ~
it write_data (char *filename) Reading a binary file: Acato wonot
{ _ Could write a ¢ program to read. Several
science data = {
VDI utili ties availabl e. |
.rm:v_—XDIM, only did an focwpal dumpo)
'Ci:’er‘ L argument can select (d)ecimal
2 % od - td testfile
0000000 1 5 1 0
int *array; 0000020 1 2 3 4
: _ 0000040
int fd;
int ret=0;
array = buffer_create (0, XDIM, YDIM);
fd = open(flename, O_CREAT|O_WRONLY,
S_IRUSR|S_IWUSR);
ret = write(fd , &data, sizeof (data));
ret = write(fd , array, XDIM*YDIM* sizeof (int));
ret = close(fd);
return ret;
.l%GOI\NL
T ESC code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov E\(\:E\\P e Argonneb
EXTREME-SCALE COMPUTING NATIONAL LABORATORY

https://github.com/radix-io/hands-on

HANDS-ON: send-to-master

A Parallel program, but serial I/O '

1. Write_data () should take an MPI Communicator File
2. Call MPI_Init() and MPI_Finalize()
3. Use MPI_Gather to collect all data onto rank O:

A Only rank 0 does 1/O; writes header and all array
information

AWhat 0s good-toanmsuterendvhat 6s bad?

ARGONNE

ESC code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov E\@\\P e Argonneﬁ

https://github.com/radix-io/hands-on

Solution fragments: MPI_Gather: collect all data on rank O

MPI_Comm_rank(comm, &rank);
MPI_Comm_size (comm, & nprocs);

[* every process creates its own buffer */

array = buffer_create (rank, XDIM, YDIM);

/* and then sends it to rank O */
int *pbuffer =
malloc(XDIM*YDIM* nprocs *sizeof (int));

MPI_CHECKMPI_Gather (
[* sender (buffer,count,type) tuple */
array, XDIM*YDIM, MPI1_INT,
/[* receiver tuple */
buffer, XDIM*YDIM, MPI_INT,
[* who gathers and across which context */
0, comm));

ARGONNE

ESC code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov E@\\P e Argonneé

https://github.com/radix-io/hands-on

Solution fragments: writing from rank O

if (rank == 0) {
/* looks like serial with more data */
e

[* writing (logically) global array, not
just our local piece of it */

data.row = YDIM* nprocs ;
data.col = XDIM;
data.iter =1;

ret = write(fd , &data, sizeof (data));

ret = write(fd , buffe
XDIM*YDIM¢ nprocs *sizeof (int)

ret = close(fd);
return ret;

ARGONNE

ESC code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov E@\\P e Argonneé

https://github.com/radix-io/hands-on

Other questions:

A Lots of machines (your laptop; Polaris) represent integers as 32 bit little endian. What if you went
back in time and ran this code on BlueGene

A Summit and ascent are powerpc64le
A We wrote row-wise. What if you wanted to write a column of data?
A What impact would a header have on data layout? Are there other options?

ESC code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov E@\\P e Argonneé

https://github.com/radix-io/hands-on

HANDS-ON: using Darshan

Find the darshan log for the last exercise
2. View the raw coumnptaersserwi th ndar shan

Generate a report
A You might have to transfer PDF locally to view

4. Find the darshan log for the exercise #2
A Hint: ybwhym®not !
A éor can you?

A Hint: https://docs.alcf.anl.gov/theta/performance-tools/darshan/ (for older Theta machine but still
applies to Polaris)

ESC code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov E@\\P e Argonneé

https://github.com/radix-io/hands-on
https://docs.alcf.anl.gov/theta/performance-tools/darshan/

Parallel 1/0 and MPI

A The stdio checkpoint routine works but is not parallel
A One process is responsible for all I/O
A No concurrency in I/O; single link to storage
A Memory pressure
A Woul dndét want to use this approach for real

A How can we get the full benefit of a parallel file system?
A We first look at how parallel I/O works in MPI
A We then implement a fully parallel checkpoint routine

A MPI is a good setting for parallel /0O
A Writing is like sending and reading is like receiving
A Any parallel I/0 system will need:
collective operations
user-defined datatypes to describe both memory and file layout
communicators to separate application-level message passing from 1/O-related message passing
non-blocking operations
A i.e., lots of MPI-like machinery

o To To T

ESC code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov E\(\:E\\P e Argonneé

https://github.com/radix-io/hands-on

Simple MPI-IO

A Collective open: all processes in communicator
A File-side data layout with file views
A Memory-side data layout with MPI datatype passed to write

MPI_File_open (COMM, name, mode, MPI_File_open (COMM, name, mode,
info, th); info, fh);
MPI_File_set view (fth, disp , etype , MPI_File_set view (fth, disp , etype ,
filetype , datarep , info); filetype , datarep , info);
MPI1_File_write_all (fh, buf , count, MPI1_File_write_all (fh, buf , count,
datatype, status); datatype, status);
disp
—> ‘4—
EXTREMEESC§LECCOMPUTING code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov ECP &= Argonneé

https://github.com/radix-io/hands-on

Collective I/O

A A critical optimization in parallel /O

A All processes (in the communicator) must call the collective
I/O function

AAl'l ows communication of fbig pictureo to fi
A Framework for I/O transformations/optimizations at the MPI-IO layer

A e.g., two-phase I/O
—
—> Large collective
[access

ESC code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov E\@\\»

Small individual
requests

e

ssssssss
cccccc NG
PROJECT

syst

Argonne &

https://github.com/radix-io/hands-on

Collective MPI I/O Functions

A Not going to go through the MPI-IO API in excruciating detail
A Happy to discuss in slack, chat, email

A MPI_File_write_at_all, etc.

A all indicates that all processes in the group specified by the communicator passed to MPI_File_open will call this
function

A at indicates that the position in the file is specified as part of the call; this provides thread-safety and clearer code
than using a separate Nnseeko call
A Each process specifies only its own access information
A the argument list is the same as for the non-collective functions
A OK to participate with zero data
A All processes must call a collective
A Process providing zero data might participate behind the scenes anyway

ESC code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov E@\\P e Argonneé

https://github.com/radix-io/hands-on

HANDS-ON: writing with MPI-10

AlLetdos take Al/ O from mastero example and make it p.
A Use MPI_File_open instead of open

A Only one process needs to write header
A Independent MPI_File write
A Could combine, but header 1/0 small and checkpoint (typically) vastly larger

AEvery process sets a fifile viewod
A Needtoskipoverheaderif i |l e view has an fAoffseto fi
A The Afile viewd here is not complicated: i
A MPI_File_set_view (fh, sizeof (header), MPI_INT,

MPI_INT, , Info));

A Each process writes one slice/row of array
A MPI_File_write_at_all
A Offset: Ar ankrosdo®™* Y B p bt in fild viewd
A fAtufer, count , da tvaluey, KBN*SDIM, MRIIINT). (

ESC code etc: https://github.com/radix-io/hands-on

https://github.com/radix-io/hands-on

Solution fragments for Hands-On 5

Header I/O from rank O:
it (rank == 0) {
MPI_CHECKMPI_File write (fh,
&header, sizeof (header), MPI_BYTE,
MPI_STATUS IGNORE));

Collective I/O from all ranks

MPI_File write_at_all (fh , rank*XDIM*YDIM,
values, XDIM*YDIM, MPI_INT,
MPI_STATUS IGNORE));

ARGONNE

ESC code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov E\(\:E\\P e Argonneé

https://github.com/radix-io/hands-on

Hands-on continued: Darshan

ALetds use Dar shan
A Find Darshan | og fil e, but dondét generate report right

A What do you think the report will say?

A OK, now generate the report. Were you surprised?
A Counts of POSIX calls vs MPI-IO calls
A Sizes of POSIX calls vs sizes of MPI-IO calls

ESC code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov E@\\P e Argonneé

https://github.com/radix-io/hands-on

Managing Concurrent Access

A Files are treated like global shared memory regions. Locks are used to manage concurrent
access:

A Files are broken up into lock units
A Unit boundaries are dictated by the storage system, regardless of access pattern

A Clients obtain locks on units that they will access before 1/0 occurs

A Enables caching on clients as well (as long as client has a lock, it knows its
cached data is valid)

A Locks are reclaimed from clients when others desire access

If an access touches any data in a Offset in File
lock unit, the lock for that region | | | | | | | | | j
must be obtained before access X . — I -'
OCCurs. Lock Lock File Access
Boundary Unit

ARGONNE

ESC code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov E\@\\P e Argonneﬁ

https://github.com/radix-io/hands-on

Implications of Locking in Concurrent Access

The left diagram shows a row-
block distribution of data for
three processes. On the right
we see how these accesses
map onto locking units in the

file.

In this example a header
(black) has been prepended to
the data. If the header is not
aligned with lock boundaries,
false sharing will occur.

In this example, processes
exhibit a block-block access
pattern (e.g.accessing a
subarray). This results in many

interleaved accesses in the file.

2D View of Data Offset in File

== T N

When accesses are to large contiguous
regions, and aligned with lock boundaries,
locking overhead is minimal.

These two regions exhibit false sharing:

no bytes are accessed by both processes, but
because each block is accessed by more than
one process, there is contention for locks.

When a block distribution is used, sub-rows
cause a higher degree of false sharing,
especially if data is not aligned with lock
boundaries.

ssssssss

code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov E@\\P e Argonneé

https://github.com/radix-io/hands-on

/O Transformations

A Software between the application and the file system performs transformations, primarily to
Improve performance.

A Goals of transformations:
I Reduce number of operations to PFS

(avoiding latency) ’ % %
I Avoid lock contention NN A4
(increasing level of concurrency)

I Hide number of clients
(more on this later)

AWi th fAtransparent?o transformations,

data ends up in the same locations When we think about I/O transformations,

in the file as it would have been we consider the mapping of data between
normally application processes and locations in file.

I l.e., the file system is still aware of the
actual data organization

A 1/0 libraries do these for you already

ARGONNE

ATPESC@@Q@ code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov E\(\C\F’ s Argonne 5

EXTREME-SCALE COMPUTING

Process O Process 1 Process 2

https://github.com/radix-io/hands-on

Reducing Number of Operations

A Because most operations go over multiple networks, /0 to a PFS incurs more latency than with
a local FS. Data sieving is a technique to address I/O latency by combining operations:

A When reading, application process reads a large region holding all needed data and pulls out what is
needed

A When writing, three steps required (below)
A Somewhat counter-intuitive: do extra 1/0 to avoid contention

Application Process
Memory | B B |
v v v v
Buffer » »
%‘1:1 P+ % 1t 0 T lﬂﬁ
N T T Y 1 3T 3T 7 1 7
File: 80 T o o o I I Bl =i

Step 1: Data in region to be modified Step 2: Elements to be written to file ~ Step 3: Entire region is written back to
are read into intermediate buffer (1 are replaced in intermediate buffer. storage with a single write operation.
read).
ESC code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov E\(:E\\P e Argonneﬁ
N N\ NATIONAL LABORATORY

https://github.com/radix-io/hands-on

Data Sieving in Practice

Not always a win, particularly for writing:
A Enabling data sieving instead made writes slower: why?
A Locking to prevent false sharing (not needed for reads)
A Multiple processes per node writing simultaneously
A Internal ROMIO buffer too small, resulting in write amplification [1]

Comparing noncontiguous |/O optimizations _ Data Sieving

MPI-10 writes 192 192
800 +
MPI-IO Reads 0 0
700 +
— 600 /\ Posix Writes 192000 192000
L]
g 500 4 —= POsix Reads 0 192015
E 400 - MPI-10 bytes written 1 920 000 000 1 920 000 000
=
& 300 - MPI-1O bytes read 0 0
2007 U Posix bytes read 0 100 039 006 128
1001 [1] Posix bytes written 1920000000 100 564 552 704
D - - -
data sieving naive Selected Darshan statistics
ESC code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov E\(\:E\\P ey Argonne o
EXTREME -SCALE COMPUTING NATIONAL LABGRATORY

https://github.com/radix-io/hands-on

Data Sieving: time line

Top: MPI 1/O call SEXXPLQRER s SIS QPTRIN
describing *
noncontiguous -
regions
One MPI I/O
call (top) turnsy
into many
POSIX
operations
(below)
Independent: no
coordination - T T T T T T I
possible. Each B) e B o e S
process does its % : Rl LN e L L S LI LR
own data - T E =
sieving. Gaps — - o — L. -—d— -
between R A T AT BT S -
operations I R R At ORI SO
show lock
acquisition. _Runm_e i
https://github.com/hpc-io/dxt-explorer Interactive log analysis tool by Jean Luca Bez
ATPESC@@Q@ code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov E\@\\» e Argonneé
EXTREME-SCALE COMPUTING NATIONAL LABORATORY

https://github.com/radix-io/hands-on
https://github.com/hpc-io/dxt-explorer

Avoiding Lock Contention

We can reorder data among processes to avold lock contention. Two-phase 1/0 splits I/0 into a
data reorganization phase and an interaction with the storage system (two-phase write depicted):

A Data exchanged between processes to match file layout
A ot phase determines exchange schedule (not shown)

Process 0 Process | Process 2 Process 0 Process | ' Process 2
Memory |[| ' [] | O 0El []] [
Buffer T
<T>
Server 0 Server | Server 2 Sei: | Sery
File i ;= L ‘
Phase 1. Data are exchanged between processes based Phase 2: Data are written to file (storage servers) with
on organization of data in file. large writes, no contention.

ARGONNE

E5§C2@23 code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov E\(\C\F’ zmRs Argonne A

EXTREME COMPUTING

https://github.com/radix-io/hands-on

Two-Phase I/O Algorithms

(

E

or, You dondot want to do this yourselfé)

Imagine a collective I/O access Offset in File >
using four aggregators to a file [[T T T [| | D [[[[y [[[
striped over four file servers A A |
(indicated by colors): Stripe Unit Lock Extent of Accesses

Boundary
One approach is to evenly . Aggregator | | Aggregator2 | Aggregator3 | Aggregator4
divide the region accessed CL T T D T | | s [[[DD | 1 | .

across aggregators. T T

Aligning regions with lock —> —>
. . . F il Lol il il el Fe=============== '
:::)cc:ll::ednat'iq:: eliminates lock “ Aggregator | E Aggregator 2 i Aggregator 3 i Aggregator 4 |
[1

Mapping aggregators to servers
reduces the nhumber of
concurrent operations on a
single server and can be helpful ﬂ AL, A2 A3 L A4 LAl T A TTAI A4
when locks are handed out on ‘ : ‘ : ‘ :

a per-server basis (e.g., Lustre).

ARGONNE

XTREME -SCALE COMPUTING

For more information, see W.K. Liao and
A. Choudhary, o0Dyn:
Domain Partitioning Methods for
Collective

I/O Based on Underlying Parallel File
System Locking Pro
November, 2008.

Todayobs syst
choose aggregators

t hat are ndb:
storage

T ESC code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov E@\\P e Argonne o

https://github.com/radix-io/hands-on

Two-phase I/O in Practice

Consistent performance independent of access pattern

A Note re-scaled y axis [1]
A No write amplification, no read-modify-write
A Some network communication but networks are fast

ARequires
A(Yes,
[1]

O

t hos e

At e mmortalgrlecadaliift ywr
are some Ni mpressi

tes Askewedo,

veoOo error

mb a |
bar s é)

an

MPI-10 writes

MPI-IO Reads

Posix Writes

/\ Posix Reads

MPI-10 bytes written

2]

code etc: https://github.com/radix-io/hands-on

MPI-10 bytes read
Posix bytes read

Posix bytes written

0 0
192000 192000
0 192015

1 920 000 000 1 920 000 000
0 0
0 100 039 006 128

1 920 000 000 100 564 552 704

Selected Darshan statistics

1832

0

1 920 000 000

0

0

1 920 000 000

https://github.com/radix-io/hands-on

